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Certificates in Data Structures

Yaoyu Wang ∗† Yitong Yin∗‡

Abstract

We study certificates in static data structures. In the cell-probe model, certificates are
the cell probes which can uniquely identify the answer to the query. As a natural notion of
nondeterministic cell probes, lower bounds for certificates in data structures immediately imply
deterministic cell-probe lower bounds. In spite of this extra power brought by nondeterminism,
we prove that two widely used tools for cell-probe lower bounds: richness lemma of Miltersen et
al. [10] and direct-sum richness lemma of Pǎtraşcu and Thorup [17], both hold for certificates
in data structures with even better parameters. Applying these lemmas and adopting existing
reductions, we obtain certificate lower bounds for a variety of static data structure problems.
These certificate lower bounds are at least as good as the highest known cell-probe lower bounds
for the respective problems. In particular, for approximate near neighbor (ANN) problem in
Hamming distance, our lower bound improves the state of the art. When the space is strictly
linear, our lower bound for ANN in d-dimensional Hamming space becomes t = Ω(d), which
along with the recent breakthrough for polynomial evaluation of Larsen [8], are the only two
t = Ω(d) lower bounds ever proved for any problems in the cell-probe model.

1 Introduction

In static data structure problems, a database is preprocessed to form a table according to certain
encoding scheme, and upon each query to the database, an algorithm (decision tree) answers the
query by adaptively probing the table cells. The complexity of this process is captured by the
cell-probe model for static data structures. Solutions in this model are called cell-probing schemes.

The cell-probe model plays a central role in studying data structure lower bounds. The existing
cell-probe lower bounds for static data structure problems can be classified into the following three
categories according to the techniques they use and the highest possible lower bounds supported
by these techniques:

• Lower bounds implied by asymmetric communication complexity: Classic techniques intro-
duced in the seminal work of Miltersen et al. [10] see a cell-probing scheme as a communication
protocol between the query algorithm and the table, and the cell-probe lower bounds are im-
plied by the asymmetric communication complexity lower bounds which are proved by the
richness lemma or round eliminations. In the usual setting that both query and data items
are points from a d-dimensional space, the highest time lower bound that can be proved in

this way is t = Ω
(

d
log s

)

with a table of s cells. This bound is a barrier for the technique,

because a matching upper bound can always be achieved by communication protocols.
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• Lower bounds proved by self-reduction using direct-sum properties: The seminal works of
Pǎtraşcu and Thorup [16, 17] introduce a very smart idea of many-to-one self-reductions,
using which and by exploiting the direct-sum nature of problems, higher lower bounds can
be proved for a near-linear space. The highest lower bounds that can be proved in this way
is t = Ω

(

d/log sw
n

)

with a table of s cells each containing w bits. Such lower bounds grow
differently with near-linear space and polynomial space, which is indistinguishable in the
communication model.

• Higher lower bounds for linear space: A recent breakthrough of Larsen [8] uses a technique
refined from the cell sampling technique of Panigrahy et al. [11, 12] to prove an even higher
lower bound for the polynomial evaluation problem. This lower bound behaves as t = Ω(d)
when the space is strictly linear. This separates for the first time between the cell-probe
complexity with linear and near-linear spaces, and also achieves the highest cell-probe lower
bound ever known for any data structure problems.

In this paper, we consider an even stronger model: certificates in static data structures. A query
to a database is said to have certificate of size t if the answer to the query can be uniquely identified
by the contents of t cells in the table. This very natural notion represents the nondeterministic
computation in cell-probe model and is certainly a lower bound to the complexity of determinis-
tic cell-probing schemes. This nondeterministic model has been explicitly considered before in a
previous work [19] of one of the authors of the current paper.

Surprisingly, in spite of the seemingly extra power brought by the nondeterminism, the highest
cell-probe lower bound to date is in fact a certificate lower bound [8]. Indeed, we conjecture that
for typical data structure problems, especially those hard problems, the complexity of certifying
the answer should dominate that of computing the answer.1 This belief has been partially justified
in [19] by showing that a random static data structure problem is hard nondeterministically. In
this paper, we further support this conjecture by showing that several mainstream techniques for
cell-probe lower bounds in fact can imply as good or even higher certificate lower bounds.

1.1 Our contributions

We make the following contributions:

1. We prove a richness lemma for certificates in data structures, which improves the classic
richness lemma for asymmetric communication complexity of Miltersen et al. [10] in two
ways: (1) when applied to prove data structure lower bounds, our richness lemma implies
lower bounds for a stronger nondeterministic model; and (2) our richness lemma achieves
better parameters than the classic richness lemma and may imply higher lower bounds.

2. We give a scheme for proving certificate lower bounds using a similar direct-sum based self-
reduction of Pǎtraşcu and Thorup [17]. The certificate lower bounds obtained from our
scheme is at least as good as before when the space is near-linear or polynomial. And for
strictly linear space, our technique may support superior lower bounds, which was impossible
for the direct-sum based techniques before.

1Interestingly, the only known exception to this conjecture is the predecessor search problem whose cell-probe

complexity is a mild super-constant while the queries can be easily certified with constant cells in a sorted table.
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problem
certificate lower bound

proved here
highest known

cell-probe lower bound

bit-vector retrieval t = Ω
(

m logn
log s

)

not known

lopsided set disjointness (LSD) t = Ω
(

m logn
log s

)

t = Ω
(

m logn
log s

)

[1, 10,15]

approximate near neighbor (ANN)
in Hamming space

t = Ω
(

d/ log sw
nd

)⋄
t = Ω

(

d/ log sw
n

)⋆
[11, 17]

partial match (PM) t = Ω
(

d/ log sw
n

)⋆
t = Ω

(

d/ log sw
n

)⋆
[11, 17]

3-ANN in ℓ∞ t = Ω
(

d/ log sw
n

)⋆
t = Ω

(

d/ log sw
n

)⋆
[17]

reachability oracle
2D stabbing

4D range reporting
t = Ω

(

log n/ log sw
n

)⋆
t = Ω

(

log n/ log sw
n

)⋆
[15]

2D range counting t = Ω
(

log n/ log sw
n

)⋆
t = Ω

(

log n/ log sw
n

)⋆
[13, 15]

approximate distance oracle t = Ω
(

logn
α log(s logn/n)

)⋆
t = Ω

(

logn
α log(s logn/n)

)⋆
[18]

⋆: lower bound which grows differently with near-linear and polynomial space;
⋄: lower bound which grows differently with linear, near-linear, and polynomial space.

Table 1: Certificate lower bounds proved in this paper.

3. By applying these techniques, adopting the existing reductions, and modifying the reductions
in the communication model to be model-independent, we prove certificate lower bounds for a
variety of static data structure problems, listed in Table 1. All these certificate lower bounds
are at least as good as the highest known cell-probe lower bounds for the respective problems.
And for approximate near neighbor (ANN), our t = Ω

(

d/ log sw
nd

)

lower bound improves the
state of the art. When the space sw = O(nd) is strictly linear, our lower bound for ANN
becomes t = Ω(d), which along with the recent breakthrough for polynomial evaluation [8],
are the only two t = Ω(d) lower bounds ever proved for any problems in the cell-probe model.

1.2 Related work

The richness lemma, along with the round elimination lemma, for asymmetric communication
complexity was introduced in [10]. The richness lemma was later widely used, for example in [2,
3, 7, 9], to prove lower bounds for high dimensional geometric problems, e.g. nearest neighbor
search. In [1, 15], a generalized version of richness lemma was proved to imply lower bounds for
(Monte Carlo) randomized data structures. A direct-sum richness theorem was first proved in
the conference version of [17]. Similar but less involved many-to-one reductions were used in [15]
and [18] for proving lower bounds for certain graph oracles.

The idea of cell sampling was implicitly used in [13] and independently in [11]. This novel
technique was later fully developed in [12] for high dimensional geometric problems and in [8]
for polynomial evaluation. The lower bound in [8] actually holds for nondeterministic cell probes,
i.e. certificates. The nondeterministic cell-probe complexity was studied for dynamic data structure
problems in [5] and for static data structure problems in [19].
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2 Certificates in data structures

A data structure problem is a function f : X × Y → Z with two domains X and Y . We call each
x ∈ X a query and each y ∈ Y a database, and f(x, y) ∈ Z specifies the result of query x on
database y. A code T : Y → Σs with an alphabet Σ = {0, 1}w transforms each database y ∈ Y to
a table Ty = T (y) of s cells each containing w bits. We use [s] = {1, 2, . . . , s} to denote the set of
indices of cells, and for each i ∈ [s], we use Ty(i) to denote the content of the i-th cell of table Ty.

A data structure problem is said to have (s,w, t)-certificates, if any database can be stored in
a table of s cells each containing w bits, so that the result of each query can be uniquely determined
by contents of at most t cells. Formally, we have the following definition.

Definition 1 A data structure problem f : X × Y → Z is said to have (s,w, t)-certificates, if
there exists a code T : Y → Σs with an alphabet Σ = {0, 1}w , such that for any query x ∈ X and
any database y ∈ Y , there exists a subset P ⊆ [s] of cells with |P | = t, such that for any database
y′ ∈ Y , we have f(x, y′) = f(x, y) if Ty′(i) = Ty(i) for all i ∈ P .

Because certificates represent nondeterministic computation in data structures, it is obvious
that it has stronger computational power than cell-probing schemes.

Proposition 2 For any data structure problem f , if there is a cell-probing scheme storing every
database in s cells each containing w bits and answering every query within t cell-probes, then f
has (s,w, t)-certificates.

Data structure certificates can be equivalently formulated as proof systems as well as certificates
in decision trees of partial functions.

As proof systems. In a previous work [19], an equivalent formulation of data structure certifi-
cates as proof systems is used. A data structure problem f : X × Y → Z has (s,w, t)-certificates
if and only if there exist a code T : Y → Σs with an alphabet Σ = {0, 1}w and a verifier
V : {0, 1}∗ → Z ∪ {⊥} where ⊥ is a special symbol not in Z indicating the failure of verifica-
tion, so that for any query x ∈ X and any database y ∈ Y , the followings are satisfied:

• Completeness: ∃P ⊆ [s] with |P | = t such that V (x, 〈i, Ty(i)〉i∈P ) = f(x, y);

• Soundness: ∀P ′ ⊆ [s] with |P ′| = t, V (x, 〈i, Ty(i)〉i∈P ′) ∈ {f(x, y),⊥};

where 〈i, Ty(i)〉i∈P denotes the sequence of pairs 〈i, Ty(i)〉 for all i ∈ P .

As certificates in decision trees. Certificate is a well-known notion is studies of decision tree
complexity (see [4] for a survey). A certificate in a Boolean function h : {0, 1}n → {0, 1} for an
input x ∈ {0, 1}n is a subset i1, i2, . . . , it ∈ [n] of t bits in x such that for every x′ ∈ {0, 1}n satisfying
that x′(ij) = x(ij) for all 1 ≤ j ≤ t, it holds that h(x) = h(x′). And the certificate complexity
of h, denoted by C(h), is the minimum number of bits in a certificate in the worst-case of input
x. The certificates and certificate complexity C(h) can be naturally generalized to partial function
h : Σs → Z with non-Boolean domain Σ and range Z.

Given a data structure problem f : X × Y → Z, and a code T : Y → Σs with an alphabet Σ =
{0, 1}w , for each query x ∈ X, the function f can be naturally transformed into a partial function
fT
x : Σs → Z so that fT

x (Ty) = f(x, y) for every database y ∈ Y and fT
x is not defined elsewhere.

4
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It is easy to verify that a data structure problem f : X × Y → Z has (s,w, t)-certificates if and
only if there exists a code T : Y → Σs with an alphabet Σ = {0, 1}w such that maxx∈X C(fT

x ) ≤ t,
where C(fT

x ) is the certificate complexity of the partial function fT
x : Σs → Z.

3 The richness lemma

From now on, we focus on the decision problems where the output is either 0 or 1. A data structure
problem f : X×Y → {0, 1} can be naturally treated as an |X|×|Y | matrix whose rows are indexed
by queries x ∈ X and columns are indexed by data y ∈ Y . The entry at the x-th row and y-th
column is f(x, y). For ξ ∈ {0, 1}, we say f has a monochromatic ξ-rectangle of size k×ℓ if there
is a combinatorial rectangle A×B with A ⊆ X,B ⊆ Y, |A| = k and |B| = ℓ, such that f(x, y) = ξ
for all (x, y) ∈ A×B. A matrix f is said to be (u, v)-rich if at least v columns contain at least u
1-entries. The following richness lemma for cell-probing schemes is introduced in [10].

Lemma 3 (Richness Lemma [10]) Let f be a (u, v)-rich problem. If f has an (s,w, t)-cell-
probing scheme, then f contains a monochromatic 1-rectangle of size u

2t log s × v
2wt+t log s .

In [10], the richness lemma is proved for asymmetric communication protocols. A communication
protocol between two parties Alice and Bob is called an [A,B]-protocol if Alice sends Bob at
most A bits and Bob sends Alice at most B bits in total in the worst-case. The richness lemma
states that existence of [A,B]-protocol for a (u, v)-rich problem f implies a submatrix of dimension
u
2A

× v
2A+B containing only 1-entries. An (s,w, t)-cell-probing scheme can imply an [A,B]-protocol

with A = t log s and B = wt, so the above richness lemma for the cell-probing schemes follows.

3.1 Richness lemma for certificates

We prove a richness result for data structure certificates, with even a better reliance on parameters.

Lemma 4 (Richness Lemma for data structure certificates) Let f be a (u, v)-rich problem.
If f has (s,w, t)-certificates, then f contains a monochromatic 1-rectangle of size u

(st)
× v

(st)2wt
.

Remark. Note that we always have log
(

s
t

)

= t log s
t +O(t) ≤ t log s. The bound in Lemma 4

is at least as good as the bound in classic richness lemma, even though now it is proved for
nondeterministic computation. When s and t are close to each other, the bound in Lemma 4 is
substantially better than that of classic richness lemma. Later in Section 4, this extra gain is used
in direct-sum reductions introduced in [17] to achieve better time lower bounds for linear or near-
linear space which match or improve state of the art. It is quite shocking to see all these achieved
through a very basic reduction to the 1-probe case to be introduced later.

The classic richness lemma for asymmetric communication protocol is proved by a halving argu-
ment. Due to determinism of communication protocols (and cell-probing schemes), the combina-
torial rectangle obtained from halving the universe are disjoint. This disjointness no longer holds
for the rectangles obtained from certificates because of nondeterminism. We resolve this issue by
exploiting combinatorial structures of rectangles obtained from data structure certificates.

The following preparation lemma is a generalization of the averaging principle.

5
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Lemma 5 Let P1,P2, . . . ,Pr ⊂ 2V be partitions of V satisfying |Pi| ≤ k for every 1 ≤ i ≤ k. There

must exist a y ∈ V such that |Pi(y)| ≥ |V |
rk for all 1 ≤ i ≤ r, where Pi(y) denotes the partition block

B ∈ Pi containing y.

Proof: The lemma is proved by the probabilistic method. Let y be uniformly chosen from V . Fix
an arbitrary order of partition blocks for each partition Pi. Let wij be the cardinality of the j-th
block in Pi. Obviously the probability of Pi(y) being the j-th block in Pi is

wij

|V | . By union bound,

the probability that |Pi(y)| < w is bounded by
∑

j:wij<w
wij

|V | < |{j : wij < w}| w
|V | . Since |Pi| ≤ k,

for every i there are at most k many such j satisfying that wij < w, thus Pr
[

|Pi(y)| < |V |
rk

]

<

k · |V |/rk
|V | = 1

r . Applying union bound again for all Pi, we have Pr
[

∃1 ≤ i ≤ r, |Pi(y)| < |V |
rk

]

< 1,

which means there exists a y ∈ V such that |Pi(y)| ≥ |V |
rk for all 1 ≤ i ≤ r.

We first prove the richness lemma for the 1-probe case.

Lemma 6 Let f be a (u, v)-rich problem. If f has (s,w, 1)-certificates, then f contains a monochro-
matic 1-rectangle of size u

s × v
s·2w .

Proof: Let T : Y → Σs where Σ = {0, 1}w be the code in the (s,w, 1)-certificates for f . Let
V ⊆ Y denote the set of v columns of f that each contains at least u 1-entries. For each cell
1 ≤ i ≤ s, an equivalence relation ∼i on databases in V can be naturally defined as follows: for
any y, y′ ∈ V , y ∼i y

′ if Ty(i) = Ty′(i), that is, if databases y and y′ look same in the i-th cell.
Let Pi denote the partition induced by the equivalence relation ∼i. Each partition Pi classifies the
databases in V according to the content of the i-th cell. Obviously |Pi| ≤ 2w, because the content
of a cell can have at most |Σ| = 2w possibilities, and we also have Pi(y) = {y′ ∈ V | Ty′(i) = Ty(i)}
being the set of databases indistinguishable from y by looking at the i-th cell, where Pi(y) denotes
the partition block B ∈ Pi containing y. By Lemma 5, there always exists a bad database y ∈ V
such that |Pi(y)| ≥ |V |

s·2w = v
s·2w for all 1 ≤ i ≤ s.

For each database y ∈ V , let X1(y) = {x ∈ X | f(x, y) = 1} denote the set of positive queries on
database y, and for a subset A ⊆ V of databases, let X1(A) =

⋂

y∈AX1(y) denote the set of queries
which are positive on all databases in A. Note that X1(y) and X1(A) are the respective 1-preimages
of Boolean functions f(·, y) and

∧

y∈A f(·, y). By definition, it is easy to see that X1(A) × A is a
monochromatic 1-rectangle for any A ⊆ V .

Claim: For any y ∈ V , it holds that X1(y) =
⋃

1≤i≤sX1(Pi(y)).
It is easy to see the direction

⋃

1≤i≤sX1(Pi(y)) ⊆ X1(y) holds because X1(A) ⊆ X1(y) for any
A containing y and clearly y ∈ Pi(y). So we only need to prove the other direction. Since f has
(s,w, 1)-certificates, for any positive query x on database y (i.e. any x ∈ X1(y)), there is a cell i
such that all databases y′ indistinguishable from y by looking at the i-th cell (i.e. all y′ ∈ Pi(y))
answer the query x positively (i.e. f(x, y′) = f(x, y) = 1), which gives x ∈ X1(Pi(y)) by definition
of X1(A). This proves the direction X1(y) ⊆

⋃

i∈[s]X1(Pi(y)).

Consider the bad database y ∈ V satisfying |Pi(y)| ≥ |V |
s·2w = v

s·2w for all 1 ≤ i ≤ s. Due to the
above claim, we have

u ≤ |X1(y)| =

∣

∣

∣

∣

∣

∣

⋃

1≤i≤s

X1(Pi(y))

∣

∣

∣

∣

∣

∣

≤
∑

1≤i≤s

|X1(Pi(y))| .
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By averaging principle, there exists a cell i such that |X1(Pi(y))| ≥ u
s . This gives us a monochro-

matic 1-rectangle X1(Pi(y))× Pi(y) of size at least u
s × v

s·2w .

The richness lemma for general case can be derived from the 1-probe case by a one-line reduction.

Lemma 7 If a data structure problem f has (s,w, t)-certificates, then f has
((

s
t

)

, w · t, 1
)

-certificates.

Proof: Store every t-combination of cells with a new table of
(s
t

)

cells each of w · t bits.

3.2 Applications

We apply our richness lemma to two fundamental data structure problems: the bit-vector retrieval
problem, and the lopsided set disjointness (LSD) problem. We prove certificate lower bounds
matching the cell-probing scheme upper bounds, which shows that for these fundamental data
structure problems, answering queries is as hard as certifying them.

Bit-vector retrieval. We consider the following fundamental problem: a database y is a vector
of n bits, a query x specifies m indices, and the answer to the query returns the contents of these
queried bits in the bit vector y. Although is fundamental in database and information retrieval
even judging by a glance, this problem has not been very well studied before (for a reason which
we will see next). We call this problem the bit-vector retrieval problem. A naive solution is
to explicitly store the bit-vector and access the queried bits directly, which gives an bit-probing
scheme using n bits and answering each query with m bits. A natural and important question
is: can we substantially reduce the time cost by using a more sophisticated data structure with a
tolerable overhead on space usage and allowing probing cells instead of bits? We shall see this is
impossible in any realistic setting by showing a certificate lower bound.

We study a decision version of the bit-vector retrieval problem, namely the bit-vector testing
problem. Let Y = {0, 1}n and X = [n]m×{0, 1}m. Each database y ∈ Y is still an n-bit vector, and
each query x = (u, v) ∈ X consists of two parts: a tuple u ∈ [n]m of m positions and a prediction
v ∈ {0, 1}m of the contents of these positions. For y ∈ {0, 1}n and u ∈ [n]m, we use y(u) to denote
the m-tuple (y(u1), y(u2), . . . , y(um)). The bit-vector testing problem f : X × Y → {0, 1} is then
defined as that for any x = (u, v) ∈ X and any y ∈ Y , f(x, y) indicates whether y(u) = v.

Proposition 8 The bit-vector testing problem f is (nm, 2n)-rich and every M ×N monochromatic
1-rectangles in f must have M ≤ (n− logN)m.

Proof: We use the notation in the proof of Lemma 6: we use X1(y) to denote set of positive
queries on database y and X1(A) to denote the set of queries positive on all databases in A ⊂ Y .
Note that X1(y) contains all the rows at which column y has 1-entries. It holds that |Y | = nm

and for every y ∈ Y , we have |X1(y)| = |{(u, v) ∈ [n]m × {0, 1}m | y(u) = v}| = nm, thus f is
(nm, 2n)-rich.

For any set A ⊆ Y , observe that |X1(A)| = |{u ∈ [n]m | ∀y, y′ ∈ A, y(u) = y′(u)}|, i.e. |X1(A)|
is the number of such m-tuples of indices over which all bit-vectors in A are identical. Let S denote
the largest S ⊆ [n] such that for every i ∈ S, y(i) is identical for all y ∈ A. It is easy to see
that |X1(A)| = |S|m and |A| ≤ 2n−|S|, therefore it holds that |X1(A)| ≤ (n − log |A|)m. Note that
X1(A) × A is precisely the maximal 1-rectangle with the set of columns A. Letting N = |A|, we
prove that every M ×N 1-rectangle must have M ≤ (n− logN)m.

7
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Theorem 9 If the bit-vector testing problem has (s,w, t)-certificates, then for any 0 < δ < 1, we

have either t ≥ n1−δ

w+log s or t ≥ δm logn
log s .

Proof: Due to Proposition 8, the problem is (nm, 2n)-rich, and hence by Lemma 4, if it has

(s,w, t)-certificates, then it contains a 1-rectangle of size nm

(st)
×2n−wt−t log (st). As

(s
t

)

≤ st, so we have

a 1-rectangle of size nm

st × 2n−wt−t log s, which by Proposition 8, requires that nm

st ≤ (wt+ t log s)m.

For any 0 < δ < 1, if t < n1−δ

w+log s , then t ≥ δm logn
log s .

A standard setting for data structure is the lopsided case, where query is significantly shorter
than database. For this case, the above theorem has the following corollary.

Corollary 10 Assuming m = no(1), if the bit-vector testing problem has (s,w, t)-certificates for

w ≤ n1−δ where δ > 0 is an arbitrary constant, then t = Ω
(

m logn
log s

)

.

With any polynomial space s = nO(1) and a wildly relaxed size of cell n1−δ, the above bound
matches the naive solution of directly retrieving m bits, implying that the fundamental problem of
retrieving part of a bit vector cannot be made any easier in a general setting, because queries are
hard to certify.

Lopsided set disjointness. The set disjointness problem plays a central role in communication
complexity and complexity of data structures. Assuming a data universe [N ], the input domains
are X =

(

[N ]
m

)

and Y =
(

[N ]
n

)

where m ≤ n < N
2 . For each query set x ∈ X and data set y ∈ Y ,

the set disjointness problem f(x, y) returns a bit indicating the emptyness of x ∩ y. The following
proposition is implicit in [10].

Proposition 11 (Milersen et al. [10]) The set disjointness problem f is
(

(

N−n
m

)

,
(

N
n

)

)

-rich,

and for every n ≤ u ≤ N , any monochromatic 1-rectangle in f of size M ×
(u
n

)

must have

M ≤
(N−u

m

)

.

Proof: We use the notation in the proof of Lemma 6: let X1(y) denote set of positive queries on
database y and X1(A) denote the set of queries positive on all databases in A ⊂ Y . X1(y) contains
all the rows at which column y has 1-entries. It holds that |Y | =

(

N
n

)

and for every set y ∈ Y with

|y| = n, we have |X1(y)| = |{x | x ⊂ [N ], |x| = m,x∩y = ∅}| =
(N−n

m

)

, thus f is
(

(N−n
m

)

,
(N
n

)

)

-rich.

For any set A ⊆ Y with |A| =
(u
n

)

, let y′ =
⋃

y∈A y. We have |y′| ≥ u. For X1(A) = {x | ∀y ∈
Y, x ∩ y = ∅}, we have |X1(A)| ≤

(

N−|y′|
m

)

≤
(

N−u
m

)

. Thus we get the conclusion.

Applying the above proposition and Lemma 4, we have the following certificate lower bound.

Theorem 12 If the set disjointness problem has (s,w, t)-certificates, then for any 0 < δ < 1, we

have either t ≥ n1−δ

w+log s or t ≥ δm(log n−o(1)))
log s .

Proof: Due to Proposition 11, the problem is
(

(N−n
m

)

,
(N
n

)

)

-rich, and hence by Lemma 4, if it

has (s,w, t)-certificates, then it contains a 1-rectangle of size
(N−n

m )
(st)

× (Nn)
(st)2wt

. As
(s
t

)

≤ st, so we

have a 1-rectangle of size
(N−n

m

)

/2t log s ×
(N
n

)

/2wt+t log s. Let a = t log s and b = wt. Let M,u

8
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denote the parameters in Proposition 11 respectively, so M =
(N−n

m

)

/2a and
(u
n

)

=
(N
n

)

/2a+b. Let

k = (N − n)/2a/m. Since
(

k
m

)

≤
(

N−n
m

)

/2a ≤
(

N−u
m

)

by Proposition 11, we have k ≤ N − u, which

leads to u ≤ N − k. Now we have
(N
n

)

/2a+b =
(u
n

)

≤
(N−k

n

)

and therefore 2a+b ≥
(N
n

)

/
(N−k

n

)

>

( N
N−k )

n > (1 + k/N)n = (1 + (N − n)/2a/mN)n ≥ (1 + 2−a/m−1)n. By taking logarithm, we have

a + b ≥ n log(1 + 2−a/m−1) > n · 2−a/m−1. If a + b < n1−δ for any δ, then 2a/m+1 ≥ nδ, thus
a ≥ δm(log n− o(1)). Replacing a, b with t log s,wt respectively, we get the conclusion.

This certificate lower bound matches the well-known cell-probe lower bound for set-disjointness [10,
15]. The most interesting case of the problem is the lopsided case where m = no(1). A calculation
gives us the following corollary.

Corollary 13 Assume m = no(1) and αn ≤ N ≤ nc for arbitrary constants α, c > 1. If the set
disjointness problem has (s,w, t)-certificates for w ≤ n1−δ where δ > 0 is an arbitrary constant,

then t = Ω
(

m logn
log s

)

.

4 Direct-sum richness lemma

In this section, we prove a richness lemma for certificates using direct-sum property of data structure
problems. Such a lemma was introduced in [17] for cell-probing schemes, which is used to prove
some highest known cell-probe lower bounds with near-linear spaces.

Consider a vector of problems f̄ = (f1, . . . , fk) where every fi : X × Y → {0, 1} is defined on
the same domain X × Y . Let

⊕k f̄ : ([k] × X) × Y k → {0, 1} be a problem defined as follows:
⊕k f̄((i, x), ȳ) = fi(x, yi) for every (i, x) ∈ [k] × X and every ȳ = (y1, y2, . . . , yk) ∈ Y k. In
particular, for a problem f we denote

⊕k f =
⊕k f̄ where f̄ is a tuple of k copies of problem f .

Lemma 14 (direct-sum richness lemma for certificates) Let f̄ = (f1, f2 . . . fk) be a vector
of problems such that for each i = 1, 2, . . . , k, we have fi : X×Y → {0, 1} and fi is (α|X|, β|Y |)-
rich. If problem

⊕k f̄ has (s,w, t)-certificates for a t ≤ s
k , then there exists a 1 ≤ i ≤ k such that

fi contains a monochromatic 1-rectangle of size αO(1)|X|
2O(t log s

kt
) × βO(1)|Y |

2O(wt+t log s
kt

) .

Remark 1. The direct-sum richness lemma proved in [17] is for asymmetric communication

protocols as well as cell-probing schemes, and gives a rectangle size of αO(1)|X|
2O(t log s

k
) × βO(1)|Y |

2O(wt+t log s
k
) . Our

direct-sum richness lemma has a better rectangle bound. This improvement may support stronger
lower bounds which separate between linear and near-linear spaces.

Remark 2. A key idea to apply this direct sum based lower bound scheme is to exploit the extra
power gained by the model from solving k problem instances in parallel. In [17], this is achieved by
seeing cell probes as communications between query algorithm and table, and t-round adaptive cell
probes for answering k parallel queries can be expressed in t log

(s
k

)

bits instead of naively kt log s
bits. For our direct-sum richness lemma for certificates, in contrast, we will see (in Lemma 15)
that unlike communications, the parallel simulation of certificates does not give us any extra gain,
however, in our case all extra gains are provided by the improved bound in Lemma 4, the richness
lemma for certificates. Indeed, all our extra gains by “parallelism” are offered by the one-line
reduction in Lemma 7, which basically says that the certificates for k instances of a problem can
be expressed in log

(

s
kt

)

bits, even better than the t log
(

s
k

)

-bit bound for communications. Giving

9
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up adaptivity is essential to this improvement on the power of parallelism, so that all kt cells can
be chosen at once which gives the log

( s
kt

)

-bit bound: we are now not even parallel over instances,
but also parallel over time.

The idea of proving Lemma 14 can be concluded as: (1) reducing the problem
⊕k f̄ from a

direct-product problem
∧k f̄ whose richness and monochromatic rectangles can be easily translated

between
∧k f̄ and subproblems fi; and (2) applying Lemma 4, the richness lemma for certificates,

to obtain large monochromatic rectangles for the direct-product problem.
We first define a direct-product operation on vector of problems. For f̄ = (f1, . . . , fk) with

fi : X × Y → {0, 1} for every 1 ≤ i ≤ k, let
∧k f̄ : Xk × Y k → {0, 1} be a direct-product problem

defined as:
∧k f̄(x̄, ȳ) =

∏

i fi(xi, yi) for every x̄ = (x1, . . . , xk) and every ȳ = (y1, . . . , yk).

Lemma 15 For any f̄ = (f1, . . . , fk), if
⊕k f̄ has (s,w, t)-certificates for a t ≤ s

k , then
∧k f̄ has

(s,w, kt)-certificates.

Proof: Suppose that T : Y k → Σs with Σ = {0, 1}w is the code used to encode databases to tables
in the (s,w, t)-certificates of

⊕k f̄ . For problem
∧k f̄ , we use the same code T to prepare table. And

for each input (x̄, ȳ) of problem
∧k f̄ where x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk), suppose that for

each 1 ≤ i ≤ k, Pi ⊂ [s] with |Pi| = t is the set of t cells in table Tȳ to uniquely identify the value of
⊕k f̄((i, xi), ȳ), then let P = P1∪P2∪· · ·∪Pk so that |P | ≤ kt. It is easy to verify that the set P of

at most kt cells in Tȳ uniquely identifies the value of
∧k f̄(x̄, ȳ) =

∧

1≤i≤k

(

⊕k f̄((i, xi), ȳ)
)

because

it contains all cells which can uniquely identify the value of
⊕k f̄((i, xi), ȳ) for every 1 ≤ i ≤ k.

Therefore, problem
∧k f̄ has (s,w, kt)-certificates.

The following two lemmas are from [17]. These lemmas give easy translations of richness and
monochromatic rectangles between the direct-product problem

∧k f̄ and subproblems fi.

Lemma 16 (Pǎtraşcu and Thorup [17]) If f̄ = (f1, f2 . . . fk) has fi : X×Y → {0, 1} and fi is
(α|X|, β|Y |)-rich for every 1 ≤ i ≤ k, then

∧k f̄ is ((α|X|)k , (β|Y |)k)-rich.

Lemma 17 (Pǎtraşcu and Thorup [17]) For any f̄ = (f1, . . . , fk) with fi : X×Y → {0, 1} for
every 1 ≤ i ≤ k, if

∧k f̄ contains a monochromatic 1-rectangle of size (α|X|)k × (β|Y |)k, then there
exists a 1 ≤ i ≤ k such that fi contains a monochromatic 1-rectangle of size (α)3|X| × (β)3|Y |.

The direct-sum richness lemma can be easily proved by combining the above lemmas with the
richness lemma for certificates.
Proof: [Proof of Lemma 14] If

⊕k f̄ has (s,w, t)-certificates, then by Lemma 15, the direct-product
problem

∧k f̄ has (s,w, kt)-certificates. Since every fi in f̄ = (f1, f2, . . . , fk) is (α|X|, β|Y |)-rich,
by Lemma 16 we have that

∧k f̄ is ((α|X|)k , (β|Y |)k)-rich. Applying Lemma 4, the richness lemma

for certificates, problem
∧k f̄ has a 1-rectangle of size (α|X|)k

( s
kt)

× (β|Y |)k
( s
kt)2kwt

. Then due to Lemma 17,

we have a problem fi who contains a monochromatic 1-rectangle of size αO(1)|X|
2O(t log s

kt
) × βO(1)|Y |

2O(wt+t log s
kt

) .

10
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4.1 Applications

We then apply the direct-sum richness lemma to prove lower bounds for two important high dimen-
sional problems: approximate near neighbor (ANN) in hamming space and partial match (PM).

• For ANN in d-dimensional hamming space, we prove a t = Ω(d/ log sw
nd ) lower bound for

(s,w, t)-certificates. The highest known cell-probing scheme lower bound for the problem is
t = Ω(d/ log sw

n ). In a super-linear space, our certificate lower bound matches the highest
known lower bound for cell-probing scheme; and for linear space, our lower bound becomes t =
Ω(d), which gives a strict improvement, and also matches the highest cell-probe lower bound
ever known for any problem (which has only been achieved for polynomial evaluation [8]).

• For d-dimensional PM, we prove a t = Ω(d/ log sw
n ) lower bound for (s,w, t)-certificates, which

matches the highest known cell-probing scheme lower bound for the problem in [17].

4.1.1 Approximate near neighbor (ANN)

The near neighbor problem NNd
n in a d-dimensional metric space is defined as follows: a database

y contains n points from a d-dimensional metric space, for any query point x from the same space
and a distance threshold λ, the problem asks whether there is a point in database y within distance
λ from x. The approximate near neighbor problem ANNλ,γ,d

n is similarly defined, except upon a
query x to a database y, answering “yes” if there is a point in database y within distance λ from
x and “no” if all points in y are γλ-far away from x (and answering arbitrarily if otherwise).

We first prove a lower bound for ANNλ,γ,d
n in Hamming space X = {0, 1}d, where for any two

points x, x′ ∈ X the distance between them is given by Hamming distance h(x, x′).
The richness and monochromatic rectangles of ANNλ,γ,n

n were analyzed in [9].

Claim 18 (Claim 10 and 11 in [9]) There is a λ ≤ d such that ANNλ,γ,d
n is (2d−1, 2nd)-rich and

ANNλ,γ,d
n does not contain a 1-rectangle of size 2d−d/(169γ2) × 2nd−nd/(32γ2).

A model-independent self-reduction of ANN was constructed in [17].

Claim 19 (Theorem 6 in [17]) For D = d/(1+5γ) ≥ log n, N < n and k = n/N , there exist two

functions φX , φY such that φX (and φY ) maps each query (x, i) (and database ȳ) of
⊕k ANNλ,γ,D

N to

a query x′ (and database y′) of ANNλ,γ,d
n and it holds that

⊕k ANNλ,γ,D
N ((x, i), ȳ) = ANNλ,γ,d

n (x′, y′).

We then prove the following certificate lower bound for ANN.

Theorem 20 For ANNλ,γ,d
n in d-dimensional Hamming space, assuming d ≥ (1 + 5γ) log n, there

exists a λ, such that if ANNλ,γ,d
n has (s,w, t)-certificates, then t = Ω

(

d
γ3 /log

swγ3

nd

)

.

Proof: Due to the model-independent reduction from
⊕k ANNλ,γ,D

N to ANNλ,γ,d
n of Claim 19, exis-

tence of (s,w, t)-certificates for ANNλ,γ,d
n implies the existence of (s,w, t)-certificates for

⊕k ANNλ,γ,D
N .

Note that for problem ANNλ,γ,D
N , the size of query domain is |X| = 2D, and the size of data

domain is |Y | = 2ND, so applying Claim 18, the problem is (|X|/2, |Y |)-rich. Assuming that t ≤ s
k ,

by Lemma 14, ANNλ,γ,D
N contains a 1-rectangle of size 2D/2O(t log s

kt
) × 2ND/2O(wt+t log s

kt
). Due

to Claim 18, and by a calculation, we have either t = Ω
(

D
γ2/ log

s
kt

)

or t = Ω
(

ND
γ2 /w

)

. We

11



www.manaraa.com

then choose N = w. Note that such choice of N may violate the assumption t ≤ s
k (that is,

N ≥ tn
s ) only when it implies an even higher lower bound t > sw

n . With this choice of N = w,

the bound t = Ω
(

D
γ2 / log

s
kt

)

is the smaller one in the two branches. Substituting D = d/(1 + 5γ)

and k = n/N we have t = Ω
(

d
γ3 / log

sN
nt

)

= Ω
(

d
γ3 / log

sw
nt

)

. Multiplying both side by a ∆ = sw
nd

gives us ∆ · γ3 = Ω
(

∆d
t / log ∆d

t

)

. Assuming ∆′ = ∆d
t , we have ∆′

log∆′ = O(∆γ3). The function

f(x) = x
log x is increasing for x > 1, so we have ∆′ = O(∆γ3 log(∆γ3)), which gives us the lower

bound t = Ω
(

d
γ3 /log

swγ3

nd

)

.

For general space, when points are still from the Hamming cube {0, 1}d, for any two points
x, x′ ∈ {0, 1}d, the Hamming distance h(x, x′) = ‖x − x′‖1 = ‖x − x′‖22. And by setting γ = 1, we
have the following corollary for exact near neighbor.

Corollary 21 There exists a constant C such that for problem NNd
n with Hamming distance, Man-

hattan norm ℓ1 or Euclidean norm ℓ2, assuming d ≥ C log n, if NNd
n has (s,w, t)-certificates, then

t = Ω(d/log sw
nd ).

4.1.2 Partial match

The partial match problem is another fundamental high-dimensional problem. The d-dimensional
partial match problem PMd

n is defined as follows: a database y contains n strings from {0, 1}d,
for any query pattern x ∈ {0, 1, ∗}d , the problem asks whether there is a string z in database y
matching pattern x, in such a way that xi = zi for all i ∈ [d] that xi 6= ∗.

Theorem 22 Assuming d ≥ 2 log n, if problem PMd
n has (s,w, t)-certificates for a w = dO(1), then

t = Ω
(

d/log sd
n

)

.

Proof: The proof is almost exactly the same as the proof of partial match lower bound in [17].
We restate the proof in the context of certificates. Let N = n/k and D = d− log k ≥ d/2. We have
the following model-independent reduction from

⊕k PMD
N to PMd

n: For the data input
⊕k PMD

N ,
we add the subproblem index in binary code, which takes log k bits, as a prefix for every string.
And for the query, we also add the subproblem index i in binary code as a prefix to the query
pattern to form a new query in PMd

n. It is easy to see PMd
n solves

⊕k PMD
N with such a reduction,

and (s,w, t)-certificates for PMd
n are (s,w, t)-certificates for

⊕k PMD
N .

In Theorem 11 of [17], it is proved that on a certain domain X × Y for PMD
N :

• PMD
N is (|X|/4, |Y |/4)-rich. In fact, in [17] it is only proved that the density of 1s in PMD

N is
at least 1/2, which easily implies the richness due to an averaging argument.

• PMD
N has no 1-rectangle of size |X|/2O(D) × |Y |/2O(

√
N/D2).

Assuming that t ≤ s
k , by Lemma 14, we have either t log s

k = Ω(D) or t log s
k+wt = Ω(

√
N/D2).

We choose N = w2 ·D8. Note that this choice of N may violate the assumption t ≤ s
k only when

an even higher lower bound t > sw2D8

n = Ω(d2) holds. With this choice of N = w2 ·D8 = dO(1), the

second bound above becomes t = Ω(d2), while the first becomes t = Ω
(

d/ log sd
nt

)

= Ω
(

d/ log sd
n

)

.

It is well known that partial match can be reduced to 3-approximate near neighbor in ℓ∞-norm
by a very simple reduction [6]. We write 3-ANNλ,d

n for ANNλ,3,d
n .

12



www.manaraa.com

Theorem 23 Assuming d ≥ 2 log n, there is a λ such that if 3-ANNλ,d
n in ℓ∞-norm has (s,w, t)-

certificates for a w = dO(1), then t = Ω(d/log sd
n ).

Proof: We have the following model-independent reduction. For each query pattern x of partial
match, we make the following transformation to each coordinate: 0 → −1

2 ; ∗ → 1
2 ; 1 → 3

2 . For a
string in database the ℓ∞-distance is 1

2 if it matches pattern x and 3
2 if otherwise.

5 Lower bounds implied by lopsided set disjointness

It is observed in [15] that a variety of cell-probe lower bounds can be deduced from the communi-
cation complexity of one problem, the lopsided set disjointness (LSD). In [18], the communication
complexity of LSD is also used to prove the cell-probe lower bound for approximate distance oracle.

In this section, we modify these communication-based reductions to make them model-independent.
A consequence of this is a list of certificate lower bounds which match the highest known cell-probe
lower bounds for respective problems, including: 2-Blocked-LSD, reachability oracle, 2D stabbing,
2D range counting, 4D range reporting, and approximate distance oracle.

5.1 LSD with structures

A key idea of using LSD in reduction is to reduce from LSD with restricted inputs.
For the purpose of reduction, the LSD problem is usually formulated as follows: the universe is

[N · B], each query set S ⊂ [N · B] has size N , and there is no restriction on the size of data set
T ⊆ [N · B]. The LSD problem asks whether S and T are disjoint.

Proposition 24 For any M ≥ N , if LSD has monochromatic 1-rectangle of size
(M
N

)

× K then
K ≤ 2NB−M .

Proof: For any 1-rectangle of LSD, suppose the rows are indexed by S1, S2, . . . , SR and the
columns are indexed by T1, T2, . . . , TK . Consider the set S =

⋃

i Si. Let M = |S|. Note that
R ≤

(

M
N

)

. For any Ti, we have Ti ∩ S = ∅, so it holds that K ≤ 2NB−M .

The 2-Blocked-LSD is a special case of LSD problem: the universe [N · B] is interpreted as
[NB ]× [B]× [B] and it is guaranteed that for every x ∈ [NB ] and y ∈ [B], S contains a single element
of the form (x, y, ∗) and a single element of the form (x, ∗, y).

In [15], general LSD problem is reduced to 2-Blocked-LSD by communication protocols. Here
we translate this reduction in the communication model to a model-independent reduction from
subproblems of LSD to 2-Blocked-LSD.

The following claim can be proved by a standard application of the probabilistic method.

Claim 25 (Lemma 11 in [14]) There exists a set F of permutations on universe [N ·B], where
|F| = e2N · 2N logB, such that for any query set S ⊂ [N · B] of LSD, there exists a permutation
π ∈ F for which π(S) is an instance of 2-Blocked-LSD.

We then state our model-independent reduction as the following certificate lower bound.

Theorem 26 For any constant δ > 0, if 2-Blocked-LSD on universe [NB ]× [B]× [B] has (s,w, t)-

certificates, then it holds either t = Ω
(

NB1−δ

w

)

or t = Ω
(

N logB
log s

t

)

.

13
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Proof: By Claim 25, we know there exists a small set F of permutations for the universe [N ·B]
such that |F| = 2O(N) and for any input S of LSD, there exists π ∈ F for which π(S) is an instance of
2-Blocked-LSD. By averaging principle, there exists a π ∈ F such that for at least |X|/2O(N) many
sets S, π(S) is an instance of 2-Blocked-LSD. Denote the set of these S as X . Restrict LSD to the
domain X ×Y and denote this subproblem as LSDX . Obviously LSDX can be solved by 2-Blocked-
LSD by transforming the input with permutation π, and hence LSDX has (s,w, t)-certificates. For
any S ∈ X , there are 2NB−N choices of T ∈ Y such that S ∩ T = ∅, so the density of 1 in LSDX is
at least 1

2N
, thus by a standard averaging argument LSDX is ( 1

2O(N) |X |, 1
2O(N) |Y |)-rich. Now by the

richness lemma, there exists a |X|/2O(N+t log s
t
) × |Y |/2O(N+t log s

t
+wt) 1-rectangle of LSDX , which

is certainly a 1-rectangle of LSD. Due to Proposition 24, for any M ≥ N , LSD has no 1-rectangle
of size greater than

(M
N

)

× 2NB−M , which gives us either N + t log s
t = Ω(N logB − N log M

N ) or
N + tw + t log s

t = Ω(M). By setting M = NB1−δ, we prove the theorem.

5.2 Reachability oracle

The problem of reachability oracle is defined as follows: a database stores a (sparse) directed graph
G, and reachability queries (can u be reached from v in G?) are answered. The problem is trivially
solved, even in the sense of certificates, in quadratic space by storing answers for all pairs of vertices.
Solving this problem using near-linear space appears to be very hard. This is proved in [15] for
communication protocols as well as for cell-probing schemes. We show the method in [15] can imply
the same lower bound for data structure certificates.

Theorem 27 If reachability oracle of n-vertices graphs has (s,w, t)-certificates for s = Ω(n), then
t = Ω

(

log n/log sw
n

)

.

The lower bound is proved for a special class of graphs, namely butterfly graphs. Besides
implying the general reachability oracle lower bound, the special structure of butterfly graphs is
very convenient for reductions to other problems.

A butterfly graph is defined by degree b and depth d. The graph has d+ 1 layers, each having
bd vertices. The vertices on level 0 are source vertices with 0 in-degree and the the ones on level d
are sinks with 0 out-degree. On each level, each vertex can be regarded as a vector in [b]d. For each
non-sink vector (vertex) on level i, there is an edge connecting a vector (vertex) on the (i + 1)-th
level that may differ only on the i-th coordinate. Therefore each non-sink vertex has out-degree b.

The problem Butterfly-ROn,b is the reachability oracle problem defined on subgraphs of the
butterfly graph uniquely specified by degree b and number of non-sink vertices n. For a problem
f : X × Y → {0, 1} we define

⊗k f : Xk × Y → {0, 1} as that
⊗k f(x̄, y) =

∏k
i=1 f(xi, y) for any

x̄ = (x1, x2, . . . , xk) ∈ Xk and any y ∈ Y . We further specify that in reachability oracle problem,
the answer is a bit indicating the reachability, thus

⊗k Butterfly-ROn,b is well-defined.

It is discovered in [15] a model-independent reduction from 2-Blocked-LSD on universe [NB ] ×
[B]× [B] to

⊗k Butterfly-RON,B for k = N
d , where d = Θ( logNlogB ) is the depth of the butterfly graph.

This can be used to prove the following certificate lower bound

Lemma 28 If Butterfly-RON,B has (s,w, t)-certificates, then either t = Ω
(

d
√
B

w

)

, or t = Ω

(

d logB

log sd
N

)

,

or t = Ω
(

ds
N

)

, where d = Θ
(

logN
logB

)

is the depth of the butterfly graph.
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Proof: By the same way of straightforwardly combining certificates as in the proof of Lemma 15,
assuming that N

d t ≤ s, if Butterfly-RON,B has (s,w, t)-certificates then
⊗k Butterfly-RON,B with

k = N
d has (s,w, Nd t)-certificates. Violating the assumption of N

d t ≤ s gives us t = Ω
(

ds
N

)

. By

the model-independent reduction in [15], 2-Blocked-LSD on universe [NB ]× [B]× [B] has (s,w, Nd t)-

certificates. Due to Theorem 26, for any constant δ > 0, either N
d t = Ω

(

NB1−δ

w

)

or N
d t =

Ω

(

N logB

log sd
Nt

)

= Ω

(

N logB

log sd
N

)

. By setting δ = 1
2 , we have either t = Ω(d

√
B

w ) or t = Ω

(

d logB

log sd
N

)

.

Theorem 27 for general graphs is an easy consequence of this lemma.
Proof: [Proof of Theorem 27] Suppose the input graphs are just those of Butterfly-RON,B. By

Lemma 28, either t = Ω(d logB
log sd

N

), or t = Ω(d
√
B

w ), or t = Ω(dsN ). Assuming s = Ω(n), the third

branch becomes t = Ω(d). Choose B to satisfy logB = max{2 logw, log sd
N } = Θ(log sdw

N ). Then
we have t = Ω(d) for the first and second branches. Since d = Θ(logN/ logB), we have t =
Ω(logN/log sdw

N ) = Ω(log n/log sw
n ).

Applying the model-independent reductions introduced in [15] from Butterfly-ROn,b to 2D stab-
bing, 2D range counting, and 4D range reporting, we have the certificate lower bounds which match
the highest known lower bounds for cell-probing schemes for these problems.

Theorem 29 If 2D stabbing over m rectangles has (s,w, t)-certificates, then t = Ω(logm/log sw
m ).

Theorem 30 If 2D range counting has (s,w, t)-certificates, then t = Ω(log n/log sw
n ).

Theorem 31 If 4D range reporting has (s,w, t)-certificates, then t = Ω(log n/log sw
n ).

5.3 Approximate distance oracle

For the distance oracle problem, distance queries dG(u, v) are answered for a database graph G.
For this fundamental problem, approximation is very important because exact solution appears to
be very difficult for nontrivial settings. Given a stretch factor α > 1, the α-approximate distance
oracle problem can be defined as: for each queried vertex pair (u, v) and a distance threshold d̃,
the problem is required to distinguish between the two cases dG(u, v) ≤ d̃ and dG(u, v) ≥ αd̃.

We prove the following certificate lower bound for approximate distance oracle which matches
the lower bound proved in [18] for cell-probing schemes.

Theorem 32 If α-approximate distance oracle has (s,w, t)-certificates, then t = Ω
(

logn
α log(s logn/n)

)

.

This holds even when the problem is restricted to sparse graphs with max degree poly(twα/ log n)

for an α = o
(

logn
log(w logn)

)

.

We use the following notations introduced in [18]. For graph G = (V,E) and any two positive
integers k, ℓ, let P(G, ℓ, k) be the set whose elements are all possible sets P ⊆ E where P can be
written as a union of k vertex-disjoint paths in G, each of length exactly ℓ. Let g(G) denote the
girth of graph G. The following claim, which is quite similar to Claim 25, is proved in [18] by the
same probabilistic argument.
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Claim 33 (Claim 13 in [18]) Let k, ℓ > 0 be two integers and N = kℓ. Let G = (V,E) be a
graph with |E| = B · N for a positive integer B, and P = P(G, ℓ, k). There exist m bijections

f1, . . . , fm : [NB] → E, where m = ln((eB)N ) · (eB)N

|P| , such that for any S ⊆ [NB] with |S| = N ,

there is a bijection fi such that fi(S) ∈ P(G, ℓ, k).

Consider the problem of α-approximate distance oracle for base-graph G, in which the α-
approximate distance queries are answered only for spanning subgraphs of G. The following lemma
is the certificate version of a key theorem in [18].

Lemma 34 There exists a universal constant C such that the following holds. Let G = (V,E) be
a graph, such that α-approximate distance oracle for the base-graph G has (s,w, t)-certificates. Let

k, ℓ be two positive integers, such that ℓ < g(G)
α+1 . Assume |E| ≥ kℓ(2tw/ℓ)1/C . Then

s ≥ k

e

(

|P(G, ℓ, k)|1/kℓ
e(|E|/kℓ)1−C

)
ℓ
t

(e|E|)− 1
tk

Proof: Suppose N = kℓ and B = |E|/N . Consider the LSD problem LSD: X × Y → {0, 1}
defined on universe [N ·B] such that each query set S ⊂ [N ·B] is of size |S| = N and each dataset
T ⊆ [N · B] is of arbitrary size. By Claim 33, there exists m bijections, f1, . . . , fm : [NB] → E,

where m = ln((eB)N ) · (eB)N

|P| where P = P(G, ℓ, k), such that for any S ⊆ [NB] with |S| = N ,

there exists a bijection fi such that fi(S) ∈ P(G, ℓ, k). By averaging principle, there exists an fi
such that for at least |X|/m many sets S, it holds that fi(S) ∈ P(G, l, k). Denote the set of such
S as X . Restrict LSD to the domain X × Y and denote this subproblem as LSDX . Next we prove
LSDX can be solved by a composition of α-approximate distance oracles.

Let fi be the bijection such that fi(S) ∈ P(G, ℓ, k) for all S ∈ X . For any S ∈ X , T ⊆ [N · B],
an instance for approximate distance oracle for the base graph G = (V,E) is constructed as follows.
The database graph for distance oracle is the spanning subgraph G′ = (V,E′) where E′ = E \fi(T ).
Due to the property of bijection fi, it holds that P = fi(S) contains k vertex-disjoint paths
p1, p2, . . . , pk, each of length ℓ. Let (u1, v1), . . . , (uk, vk) denote the pairs of end-vertices of these
paths. Since fi is a bijection, the disjointness of S and T translates to the disjointness of fi(S) and
fi(T ), i.e. all these k vertex-disjoint paths are intact by removing edges in fi(T ) from the graph G.

Consider the α-approximate distance oracle problem α-DistG for the base-graph G. We then
observe that LSDX can be solved by the problem

⊗k α-DistG of answering k parallel approximate
distance queries, where

⊗k f of a problem f is as defined in last section. Consider the k vertex
pairs (ui, vi), i = 1, 2, . . . , k connected by vertex-disjoint paths pi constructed above. We have
dG(ui, vi) = ℓ for every 1 ≤ i ≤ k. For α-DistG, if all edges in pi are in E′, then dG′(ui, vi) ≤ ℓ,
so α-DistG((ui, vi, ℓ), G

′) will return “yes”, and if there is an edge in pi is not in E′, since graph G
has girth g(G) > (α+ 1)ℓ, we must have dG′(ui, vi) ≥ g(G)− ℓ > αℓ, so α-DistG((ui, vi, ℓ), G

′) will
return “no”. By above discussion, if α-DistG((ui, vi, ℓ), G

′) returns “yes” for all k queries then it
must hold S ∩ T = ∅, and if α-DistG((ui, vi, ℓ), G

′) returns “no” for some i, then S ∩ T 6= ∅, i.e. we
have a model-independent reduction from LSDX to

⊗k α-DistG.
If the α-approximate distance oracle problem α-DistG has (s,w, t)-certificates, then by directly

combining k certificates for k parallel queries, the problem
⊗k α-DistG has (s,w, kt)-certificates,

and hence LSDX has (s,w, kt)-certificates. For every S ∈ X , there are 2NB−N many T disjoint
with S, so the density of LSDX is at least 2−N . By a standard averaging argument, this means
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LSDX is ( 1
2N+1 |X |, 1

2N+1 |Y |)-rich. By Lemma 4, there exist universal constants C1, C2 > 0 such that

LSDX has monochromatic 1-rectangle of size |X |/2O(N+kt log s
kt

) × |Y |/2O(N+kt log s
kt

+ktw), which is

also 1-rectangle of LSD. Note that |X | ≥ |X|/m = |X|/ ln((eB)N ) · (eB)N

|P| , so the rectangle is of size
at least

|X|/2O(N log(eB)+log(eBN)−log(|P|)+kt log s
kt

) × |Y |/2O(N+kt log s
kt

+ktw),

where the big-O notations hide only universal constants. And for LSD, |X| =
(

NB
N

)

and |Y | = 2NB .

Due to Proposition 24, for any M ≥ N , LSD has no 1-rectangle of size greater than
(M
N

)

× 2NB−M .
By a calculation, there exist a universal constant C > 0 such that by considering an M = Θ(NBC),
we have either tk log(s/k) +N log(eB) + log(eBN) − log(|P|) ≥ CN logB or ktw ≥ NBC . Since
the lemma assumes |E| ≥ kℓ(2tw/ℓ)1/C , we have B ≥ (2tw/ℓ)1/C , thus NBC ≥ kℓ · 2tw/ℓ = 2ktw.
The second branch can never be satisfied. And by a calculation, the first branch gives us the bound
of the lemma.

The following graph-theoretical theorem is proved in [18].

Theorem 35 (combining Lemma 14, Theorem 9, 17, and 18 of [18]) Let n be sufficiently
large. For any constant C > 0, any t = t(n) and any α = α(n), w = w(n) satisfying w = no(1) and

α = o
(

logn
log(w logn)

)

. There exist r = r(n) and r-regular graph G = Gn of n vertices, such that

• r ≥ (4twα/g(G))1/C ;

• 2α ≤ g(G) ≤ log n;

• |P(G, ℓ, k)|1/kℓ = Ω(r) for ℓ = ⌊g(G)/2α⌋ and k = n/20ℓ;

• rg(G) = nΩ(1).

Now we prove Theorem 32 by applying Lemma 34 to the sequence of regular graphs Gn constructed
in Theorem 35. Note that in Gn, we have |E| = n·r/2 = 10kℓ·r ≥ 10kℓ·(2tw/ℓ)1/C ≥ kℓ(2tw/ℓ)1/C ,
so the assumption of Lemma 34 is satisfied. On the other hand, we have |P(G, ℓ, k)|1/kℓ = Ω(r)
and e(|E|/kℓ)1−C = Θ(r1−C). Since |E| ≤ n2 ≤ (ℓk)4 ≤ k8, we have (e|E|)1/tk = Θ(1). And it
holds that k = n

20ℓ = Ω( n
logn). Ignoring constant factors, the bound in Lemma 34 implies:

s ≥ n

log n

( r

r1−C

)Ω(ℓ/t)
=

n

log n
rΩ(ℓ/t) =

n

log n
rΩ(g(G)/αt) =

nΩ(1+1/αt)

log n

Translating this to a lower bound of t, we have t = Ω
(

logn
α log(s logn/n)

)

.
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